Immunomodulatory Fungi: An Alternative for the Treatment of Cancer

Main Article Content

Diana Lorena Nieto-Mosquera
Hugo Ramiro Segura-Puello
Juan Sebastian Segura-Charry
Diana Milena Muñoz-Forero
Andrea Catalina Villamil-Ballesteros


The present study aims to determine the role of immunomodulatory fungi for the treatment of cancer as an alternative way. Mushrooms have been part of human culture for thousands of years, many cultures especially from the East, recognized that the extracts of certain fungi could have great health benefits. Recent research has focused on identifying compounds that can modulate, positively or negatively, the biological responses of immune cells. These compounds stimulate immunity, and not only for the treatment of cancer, but also for immunodeficiency diseases; for drug-induced generalized immune suppression; for therapy combined with antibiotics and as adjuvant for vaccines. The medicinal mushrooms are considered as immunomodulators, they are able to regulate the immune system. A diverse collection of bioactive polysaccharides, glycoproteins, glycopeptides, and proteoglycans have an effect on the proliferation and differentiation of immune cells and cytokines. Different purified polysaccharides have had clinical use in Japan, China, and Korea for many years, without reports of negative effects in the short term or in the long term. Different studies have shown that the application of polysaccharide extracts can have a cancer prevention effect and a restriction of tumor metastasis; they have also been used to treat microbial and viral infections, cardiovascular diseases and diabetes.

Fungi, cancer, immunomodulation, therapheutics.

Article Details

How to Cite
Nieto-Mosquera, D., Segura-Puello, H., Segura-Charry, J., Muñoz-Forero, D. M., & Villamil-Ballesteros, A. (2019). Immunomodulatory Fungi: An Alternative for the Treatment of Cancer. Journal of Cancer and Tumor International, 9(2), 1-13.
Review Article


Zhang M, Cui SW, Cheung PCK, Wang Q. Antitumor polysaccharides from mushrooms: A review on their isolation process, structural characteristics and antitumor activity. Trends in Food Science & Technology. 2007;18:4-19.

Lemieszek M, Rzeski W. Anticancer properties of polysaccharides isolated from fungi of the Basidiomycetes class. Contemporary Oncology. 2012;16(4):285–289.

Chatterjee S, Biswas G, Kumar S, Acharya K. Antineoplastic effect of mushrooms: A review. Australian Journal of Crop Science. 2011;5(7):904-911.

Jiang J, Sliva D. Novel medicinal mushroom blend suppresses growth and invasiveness of human breast cancer cells. International Journal of Oncology. 2010;37: 1529-1536.

Akramienė D, Kondrotas A, Didžiapetrienė J, Kėvelaitis E. Effects of -glucans on the immune system. Medicina (Kaunas). 2007;43(8):597-606.

Chi-Fung Chan G, Keung Chan W, Man-Yuen Sze D. The effects of β-glucan on human immune and cancer cells. Journal of Hematology & Oncology. 2009;2-25.

Smith J, Rowan N, Sullivan R. Medicinal mushrooms: A rapidly developing area of biotechnology for cancer therapy and other bioactivities. Biotechnology Letters. 2002; 24:1839–1845.

Smith J, Sullivan R, Rowan N. Mushrooms and cancer therapy. Biologist. 2005;52(6): 328-336.

Ferreira I, Vaz J, Vasconcelos H, Martins A. Compounds from wild mushrooms with antitumor potential. Anticancer Agents in Medicinal Chemistry. 2010;10(5):424-36.

Llauradó G, Morris H, Marcos J, Castán L, Bermúdez R. Plantas y hongos comestibles en la modulación del sistema inmune. Revista Cubana de Investigaciones Biomédicas. 2011;30(4): 511-527.

Zhang Y, Li S, Wang X, Zhang L, Cheung P. Advance in lentinan: Isolation, structure, chain conformation and bioactivities. Food Hydrocolloids. 2011;25:196-206.

Daba A, Ezeronye O. Anti-cancer effect of polysaccharides isolated from higher basidiomycetes mushrooms. African Journal of Biotechnology. 2003;2(12):672-678.

Chen Y, Hu D, Cheong K, Li J, Xie J, Zhao J, Li S. Quality evaluation of lentinan injection produced in China. Journal of Pharmaceutical and Biomedical Analysis. 2013;78(79):176–182.

Zheng R, Jie S, Hanchuan D, Moucheng W. Characterization and immuno-modulating activities of polysaccharide from Lentinus edodes. International Immunopharmacology. 2005;5:811-820.

Ooi V, Liu F. Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Current Medicinal Chemistry. 2000;7:715-729.

El Enshasy H, Hatti-Kaul R. Mushroom immunomodulators: Unique molecules with unlimited applications. Trends in Biotechnology. 2013;31(12):668-676.

Sonawane H, Bhosle S, Bapat G, Vikram G. Pharmaceutical metabolites with potent bioactivity from mushrooms. Journal of Pharmacy Research. 2014;8(7):969-972.

Gao Y, Zhou S. Cancer prevention and treatment by Ganoderma, a mushroom with medicinal properties. Food Rev Int. 2003;19:275–325.

Wasser S. Medicinal mushrooms as a source of antitumor and immuno-modulating polysaccharides. Applied Microbiology and Biotechnology. 2002; 60(3):258–274.

Zhang Y, Ma G, Fang L, Wang L, Xie J. The immunostimulatory and anti-tumor activities of polysaccharide from Agaricus bisporus (brown). Journal of Food and Nutrition Research. 2014;2(3):122-126.

Kozarski M, Klaus A, Jakovljevic D, Todorovic N, Niksic M, Vrvic M, Griensven L. Dietary polysaccharide extracts of Agaricus brasiliensis fruiting bodies: Chemical characterization and bioactivities at different levels of purification. Food Research International. 2014;64:53-64.

Kozarski M, Klaus A, Niksic M, Jakovljevic D, Helsper J, Griensven L. Antioxidative and immunomodulating activities of polysaccharide extracts of the medicinal mushrooms Agaricus bisporus, Agaricus brasiliensis, Ganoderma lucidum and Phellinus linteus. Food Chemistry. 2011;129:1667-1675.

Smiderle F, Sassaki G, Arkel J, Iacomini M, Wichers H, Griensven L. High molecular weight glucan of the culinary medicinal mushroom Agaricus bisporus is an α-glucan that forms complexes with low molecular weight galactan. Molecules. 2010;15:5818-5830.

Adams L, Phung S, Wu X, Ki L, Chen S. White button mushroom (Agaricus bisporus) exhibits antiproliferative and proapoptotic properties and inhibits prostate tumor growth in athymic mice. Nutricion and Cancer. 2008;60(6):744-756.

Volman J, Mensink R, Griensven L, Plat J. Effects of α-glucans from Agaricus bisporus on ex vivo cytokine production by LPS and PHA-stimulated PBMCs; a placebo-controlled study in slightly hypercholesterolemic subjects. European Journal of Clinical Nutrition. 2010;64:720-726.

Sun Y, Liu J. Purification, structure and immunobiological activity of a water-soluble polysaccharide from the fruiting body of Pleurotus ostreatus. Bioresource Technology. 2009;100:983-986.

Sarangi I, Ghosh D, Bhutia S, Mallick S, Maiti T. Anti-tumor and immunomodulating effects of Pleurotus ostreatus mycelia-derived proteoglycans. International Immunopharmacology. 2006;6:1287-1297.

Synytsya A, Míčková K, Synytsya A, Jablonský I, Spěváček J, Erban V, Čopíková J. Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and potential prebiotic activity. Carbohydrate Polymers. 2009;76(4):548–556.

Facchini J, Alves E, Aguilera C, Miranda R, Lange M, Wisbeck E, Furlan S. Antitumor activity of Pleurotus ostreatus polysaccharide fractions on Ehrlich tumor and Sarcoma 180. International Journal of Biological Macromolecules. 2014;68:72-77.

Lavi I, Levinson D, Peri I, Tekoah Y, Hadar Y, Schwartz B. Chemical characterization, antiproliferative and antiadhesive properties of polysaccharides extracted from Pleurotus pulmonarius mycelium and fruiting bodies. Applied Microbiology and Biotechnology. 2010;85:1977-1990.

Ross G, Vêtviĉka V, Yan J, Xia Y, Vêtviĉková J. Therapeutic intervention with complement and β-glucan in cancer. Immunopharmacology. 1999;42:61-74.

Synytsya A, Míčková K, Jablonský I, Sluková M, Čopíková J. Mushrooms of genus Pleurotus as a source of dietary fibres and glucans for food supplements. Czech Journal of Food Sciences. 2008;26(6):441-446.

Cruz E. Especies novedosas de champiñones (Agaricus) con propiedades funcionales antioxidantes y antimicrobianas, aisladas de zonas rurales de Mexico. Tesis Maestría; 2012.

Xia F, Fan J, Zhu M, Tong H. Antioxidant effects of a water-soluble proteoglycan isolated from the fruiting bodies of Pleurotus ostreatus. Journal of the Taiwan Institute of Chemical Engineers. 2011;042: 402–407.

Tsang K, Lam C, Yan C, Mak J, Ooi G, Ho J, Lam B, Man R, Sham J, Lam W. Coriolus versicolor polysaccharide peptide slows progression of advanced non-small cell lung cancer. Respiratory Medicine. 2003;97(6):618–624.

Borchers A, Keen C, Gershwin E. Mushrooms, tumors, and immunity: An update. Experimental Biology and Medicine. 2004;229(5):393-406.

Gao Y, Zhou S, Chen G, Dai X, Ye J. A phase I/II study of a Ganoderma lucidum (Curt.: Fr.) P. Karst. Extract (Ganopofy) in patients with advanced cancer. International Journal of Medicinal Mushrooms. 2002;4(3).

DeVere R, Hackman R, Soares S, Beckett L, Sun B. Effects of a mushroom mycelium extract on the treatment of prostate cancer. Urology. 2002;60(4):640-4.

Kodama N, Komuta K, Sakai N, Nanba H. Effects of D-Fraction, a polysaccharide from Grifola frondosa on tumor growth involve activation of NK cells. Biological & Pharmaceutical Bulletin. 2002;25(12): 1647–1650.

Sandoval L. Estudio de las cualidades nutritivas de cuatro tipos de sustratos para el cultivo de champiñones (Agaricus bisporus). Tesis Pregrado. Pontificia Universidad Católica del Ecuador; 2012.

Caruffo M, López P, Navarrete N. Uso de β-glucanos como inmunoestimulantes en la agricultura. Acuaindustria. 2013;118-121.

Synytsya A, Novák M. Structural diversity of fungal glucans. Carbohydrate Polymers. 2013;92:792-809.

García C. Algunos aspectos estructurales y funcionales de la pared celular de Agaricus bisporus y sus aplicaciones más inmediatas. Anales de la Real Academia de Farmacia. 2000;66(1):2-19.

Ardón C. La producción de los hongos comestibles. Universidad de San Carlos de Guatemala; 2007.

Curvetto N. Grifola frondosa (Maitake): Su valor nutracéutico, nutricéutico, farmacéutico y cosmecéutico. Tecnología de Producción; 2009.

Camelini C, Maraschin M, De Mendonça M, Zucco C, Ferreira A, Tavares L. Structural characterization of β-glucans of Agaricus brasiliensis in different stages of fruiting body maturity and their use in nutraceutical products. Biotechnology Letters. 2005;27(17):1295–1299.

Lull C, Wichers H, Savelkoul H. Antiinflammatory and immunomodulating properties of fungal metabolites. Mediators of Inflammation. 2005;2:63–80.

Wasser S, Didukh M. Dietary supplements from culinary-medicinal mushrooms: A variety of regulations and safety concerns for the 21st Century. International Journal of Medicinal Mushrooms. 2004;6(3).

Ballesteros H. Determinación de las características productivas de cepas nativas mexicanas de champiñón Agaricus bisporus (J.E. Lange) Imbach para su potencial uso comercial. Tesis Pregrado. Universidad Veracruzana; 2012.

Smiderle F, Ruthes A, Arkel J, Chanput W, Iacomini M, Wichers H, Griensven L. Polysaccharides from Agaricus bisporus and Agaricus brasiliensis show similarities in their structures and their immuno-modulatory effects on human monocytic THP-1 cells. BMC Complementary and Alternative Medicine. 2011;11-58.

Ravi R, Bedi A. NF-κB in cancer—a friend turned foe. Drug Resistance Updates. 2004;7:53–67.

Sánchez C. Evaluación de la productividad del hongo comestible Pleurotus ostreatus sobre un residuo agroindustrial del departamento del Valle del Cauca y residuos de poda de la Universidad Autónoma de Occidente. Tesis Pregrado. Universidad Autónoma de Occidente; 2013.

Vickers A. Botanical medicines for the treatment of cancer: Rationale, overview of current data, and methodological considerations for phase I and II trials. Cancer Investigation. 2002;20(7-8):1069–1079.